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To eliminate the deficiency in the biasing force selection and mathematical formulation of existing robust optimizers, a direct search 

formulation is proposed to treat the robust performances as additional constrained functions. To solve the resulting robust optimization 
problem, a robust oriented quantum-inspired evolutionary algorithm (QEA) is proposed. In the proposed robust QEA, a mechanism to 
activate the robust performance checking procedure only to promising solution is introduced, and efficiently numerically implemented. 
The numerical results on a case study are reported in order to validate the feasibility and the merit of the proposed methodology in 
solving practical engineering robust optimization designs. 
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I. A DIRECT SEARCH METHODOLOGY FOR ROBUST 

OPTIMIZATIONS 

 N the study of design optimizations of electromagnetic 
devices, increasing attentions have been given to the 

robustness of an optimal design since it is possible that slight 
perturbations or variations in the optimized variables obtained 
using a traditional performance based optimizer could result in 
either a significant performance degradation or an infeasible 
solution due to the violation of the design constraint functions 
because of the existences of inevitable and unavoidable 
imprecision and uncertainties in an engineering design problem. 
Consequently, a wealth of robust oriented optimization 
techniques have been developed and applied successfully to 
solve different engineering design problems under conditions 
of uncertainties in electromagnetics [1]-[3].  

Robustness means some degree of insensitivity to small 
perturbations in either the design or environmental variables. 
To quantify the uncertainty in robust design optimizations, 
there are two categories of uncertainty quantization, the 
probability-based and the interval-based approaches [4]. The 
probability-based approach uses some probabilistic information 
of the uncertainty, commonly the mean (expected fitness) and 
the standard deviation as the gauges to assess the robustness of 
a solution. The interval-based method simply uses the nominal 
value and the bounds of the uncertain parameters, and the worst 
case scenario is commonly used as the robust performance.  

Obviously, an ensemble of tens or even hundreds of function 
calls in a small neighborhood of a given solution is sampled and 
their function values are used to quantify the uncertainty in 
robust optimizations. In other words, the computational burden 
for a robust optimizer is significantly higher than that for its 
global counterpart. This situation is further exacerbated by the 
application of high fidelity numerical methods, such as finite 
element models, which are commonly used in inverse and 
optimization problems. In this regard, an efficient direct search 
methodology is proposed in this paper. 

A. New Formulation of a Robust Optimization 

Without loss of generality, one considers a constrained 
minimization problem with an interval uncertainty, as 

formulated as: 
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where, x is the vector of design (decision) parameters 
(variables),   is the vector of uncertainty variables, N is the 

vector of the nominal value of , 0  is the vector of the half 

range of the interval uncertainty. 
In this paper, the standard deviation and the worst case metric 

are used as the robust performance parameters, respectively, for 
the objective and constraint functions, i.e.: 
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where sN  is the number of total sampling points generated in 

a small neighborhood of the specific point x. 
In most of the robust optimization methodologies , the robust 

counterparts of the original design problem of (1), such as 
formulated in (2) and (3), are either simply solved in lieu of the 
original optimal design problem, or combined with the original 
performance parameter (objective function and constraints) to 
transfer to a multi-objective optimization problem to seek the 
robust optimal solution. In other words, the robust performance 
is used as a predominant parameter in determining the searching 
direction of an optimizer in the optimization process. However, 
it is mathematically known that only local optimal solutions and 
boundary solutions have the potential to be a robust optimal 
solution [5]. In this regard, the original objective function 
should be selected as the biasing force of the optimizer to 
stimulate enough competitive pressure to evolve to the exact 
robust optimal solution. Consequently, the proposed robust 
optimization formulation is directly formulated as 
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together with, 
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where ( )wg x  is the worst case scenario of g(x), ( )toleranceg  is 

the acceptable tolerance of g(x), [ ( )]f x  is the standard 

deviation of f(x), tolerance  is the acceptable tolerance of 

[ ( )]f x . 

B.  A Robust Oriented Quantum-Inspired Evolutionary 
Algorithm  

Even though any evolutionary algorithm can be used readily 
to find the robust optimal solution of (7) and (8), the quantum-
inspired evolutionary algorithm (QEA) [6] is extended to a 
robust oriented optimizer due to its inherent characteristics in 
developing an efficient robust optimizer.  

Mathematically, the robust optimal solution of a constrained 
optimal design problem is either a local/global optimum of the 
objective function or a solution distributed on the boundaries of 
the feasible parameter space. In this point of view, it is 
unnecessary to check the robust performance constraints of (8) 
for every intermediate individual which is generated by 
observing the Q-bit individual. However, it is not easy to 
identify if an intermediate solution is a (local) optimal one in 
the optimization process.  Nevertheless, from the iterative 
procedures of the proposed QEA, it is obvious that only the best 
and boundary solutions ever searched have the potential to be a 
global/local optimum. This salient feature lends that the 
proposed algorithm is ideal for developing an efficient and 
simple robust optimizer since one needs only to check the 
robust performance constraints of those potential “optimal” 
solutions. In this point of view, a simple strategy to activate the 
robust performance checking procedure is proposed. More 
specially, in the iterative process, the robust performance 
feasibility checking of (8) is activated only when a new best 
solution/a boundary solution, *x , is searched/generated and iff 

*
2|| ( ) ||f x  is smaller than a predefined value. Obviously, the 

robust performance feasibility checking of the mere potential 
solutions rather than the total intermediate ones will reduce a 
huge amount of computation costs. Moreover, to efficiently 
determine *

2|| ( ) ||f x  the stochastic approximation method is 

employed to realize computational savings of n (n is the number 
of the decision variables) times relative to the finite difference 
approximation [7]. 

II.  NUMERICAL VALIDATION AND CONCLUSIONS 

The robust optimization counterpart of the Team Workshop 
problem 22 of a superconducting magnetic energy storage 
(SMES) configuration with three free parameters [8] is selected 
and solved to validate the feasibility and merit of the proposed 
methodology. For performance comparisons, this case study is 
solved, respectively, by using the proposed robust optimal 
methodology, the combined Polynomial Chaos and PSO 
approach (PCPSO) [8]. As explained in [8], the combined 
PCPSO approach is proposed for efficiently solving robust 

optimization under uncertainties with special random process. 
In the numerical implementation of the combined PCPSO 
approach, a Gaussian random process is assumed for the 
uncertainties in the design variables. Moreover, to facilitate 
implementations of polynomial chaos, the distance (radial) 
variable in the feasible space is used as the only uncertain 
variable. For a fair comparison, the final robust optimal solution 
obtained by using the combined PCPSO is used as a reference.  

In the numerical study, the interval uncertainty is set to ± 1% 
limits of the ranges of the corresponding decision variables. The 
final solutions searched by using the proposed and the PCPSO 
method are nearly identical, while the iterative numbers for the 
proposed and the PCPSO method in a typical run are, 
respectively, 2685 and 3018. More specially, for the robust 
optimal solution, the stray field is 7.54910-7, the stored energy 
is 179.2140 MJ; while these are, respectively, to 7.7510-7, 
179.9956 MJ for the global optimal solution which is obtained 
using a traditional performance-based optimizer.   

Moreover, to evaluate the robustness of the global and robust 
optimal solutions against small variations, some post-
processing numerical experiments are conducted. In a more 
detail description, 10 random perturbations with ± 1% limits of 
the bound of the interval uncertainty are applied to the two 
optimized decision variables. The numerical results have 
revealed that the averaged performance degradations of the 
global optimal solution for the 10 perturbations are that the 
stray field changing is 0.82 and the averaged deviation of the 
stored energy is 0.02, both in relative values; while that the 
averaged performance degradations of the robust optimal 
solution obtained using the two robust optimizers for the 10 
perturbations are that the stray field changing is 0.33, less than 
the given tolerance of 35%, and the averaged deviation of the 
stored energy is 0.0015, nearly identical to the given tolerance 
of 0.15%, both in relative values. 
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